A micróglia regula o crescimento e a integridade da mielina do sistema nervoso central

blog

LarLar / blog / A micróglia regula o crescimento e a integridade da mielina do sistema nervoso central

Nov 27, 2023

A micróglia regula o crescimento e a integridade da mielina do sistema nervoso central

Natureza volume 613, páginas

Nature volume 613, páginas 120–129 (2023) Citar este artigo

35k acessos

13 Citações

223 Altmétrico

Detalhes das métricas

A mielina é necessária para a função dos axônios neuronais no sistema nervoso central, mas os mecanismos que sustentam a saúde da mielina não são claros. Embora macrófagos no sistema nervoso central tenham sido implicados na saúde da mielina1, não se sabe quais populações de macrófagos estão envolvidas e quais aspectos influenciam. Aqui mostramos que a microglia residente é crucial para a manutenção da saúde da mielina na idade adulta, tanto em camundongos quanto em humanos. Demonstramos que a microglia é dispensável para o desenvolvimento da bainha de mielina. No entanto, eles são necessários para a regulação subsequente do crescimento da mielina e da função cognitiva associada, e para a preservação da integridade da mielina, evitando sua degeneração. Mostramos que a perda da saúde da mielina devido à ausência de micróglia está associada ao aparecimento de um estado de oligodendrócitos mielinizantes com metabolismo lipídico alterado. Além disso, esse mecanismo é regulado pela interrupção do eixo TGFβ1–TGFβR1. Nossas descobertas destacam a microglia como alvos terapêuticos promissores para condições nas quais o crescimento e a integridade da mielina estão desregulados, como no envelhecimento e em doenças neurodegenerativas2,3.

A mielina envolve os axônios neuronais para garantir sua saúde e propagação rápida de impulsos elétricos para apoiar as funções do sistema nervoso central (SNC), por exemplo, cognição. A aprendizagem e a memória envolvem a formação de mielina e requerem que a mielina seja de boa integridade estrutural. As camadas de mielina são compactadas em espessura proporcional ao diâmetro do axônio4; no entanto, com o envelhecimento e em doenças neurodegenerativas, a interrupção dessas propriedades da mielina ocorre por meio da hipermielinização. Áreas ampliadas de mielina não compactada (onde a mielina cresce) levam a uma mielina mais espessa, desfiando e formando saliências (denominadas dobras externas), e a perda da integridade da mielina por degeneração também ocorre nesses contextos2,3,5. Essas alterações da mielina levam a cognição prejudicada em camundongos e predizem desempenho cognitivo ruim em primatas não humanos e humanos idosos6,7,8,9. No entanto, os mecanismos fundamentais que coordenam a formação, crescimento e integridade adequados da mielina do SNC não são claros. Pesquisas recentes envolveram uma população de macrófagos residentes no SNC, microglia, neste processo. A mielinização e a geração de oligodendrócitos formadores de mielina são prejudicadas após a depleção microglial através da perda da função do receptor do fator 1 estimulador de colônia pró-sobrevivência (CSF1R)1. No entanto, esta abordagem também tem como alvo macrófagos associados à borda residentes no SNC (incluindo macrófagos perivasculares) e monócitos sanguíneos. Portanto, não está claro quais populações de macrófagos regulam a mielina, e o envolvimento específico da microglia na formação e saúde da mielina é desconhecido.

Para responder a essas questões, utilizamos um modelo de camundongo transgênico desenvolvido recentemente no qual o superpotenciador do elemento regulatório intrônico Fms (Fire) do gene Csf1r (FireΔ/Δ; Fig. 1a) é deletado. Essa deleção leva à ausência de micróglia desde o desenvolvimento (quando normalmente emergem) até a idade adulta, enquanto outros macrófagos do SNC estão presentes10,11. Esses camundongos não apresentam muitos dos problemas de confusão que ocorrem em outros modelos com deficiência de micróglia, como morte no desenvolvimento, anormalidades ósseas e ausência de macrófagos e monócitos perivasculares do SNC10. Usando o marcador microglia TMEM119, confirmamos que a microglia estava esgotada no maior trato de substância branca do cérebro, o corpo caloso (Fig. 1b). Os poucos macrófagos IBA1+ retidos em camundongos FireΔ/Δ foram positivos para o marcador de macrófagos perivasculares LYVE1 (Fig. 1c,d). Além disso, a presença dessas células foi confirmada pela observação de células CD206+ adjacentes aos vasos sanguíneos CD31+ (Dados Estendidos Fig. 1a). As densidades de macrófagos perivasculares não foram significativamente alteradas em camundongos FireΔ/Δ neste ponto de tempo (Fig. 1e) ou em idades mais avançadas (Dados Estendidos Fig. 1b,c) apesar da expressão reduzida de CSF1R (Dados Estendidos Fig. 1d–f). Números de astrócitos semelhantes (GFAP+SOX9+) foram observados no corpo caloso de camundongos FireΔ/Δ e companheiros de ninhada Fire+/+ (células GFAP+SOX9+; dados estendidos Fig. 1g,h). Notavelmente, em uma idade em que a mielinização está em andamento (dia 25 pós-natal (P25) a P30), camundongos FireΔ/Δ geraram oligodendrócitos maduros (OLIG2+CC1+) (Fig. 1f,g), que formaram uma proporção semelhante da linhagem de oligodendrócitos (OLIG2+) como em irmãos de ninhada Fire+/+ (Fig. 1h). A mielina foi formada em camundongos FireΔ/Δ, conforme indicado pela expressão das proteínas de mielina MAG, MBP, CNPase, MOG e PLP no corpo caloso (Fig. 1i e Dados Estendidos Fig. 2a–c) e no cerebelo (Dados Estendidos Fig. 2d,e). A análise ultraestrutural confirmou que a mielinização ocorreu em camundongos FireΔ/Δ (Fig. 1i), sem diferença significativa no número de axônios mielinizados em comparação com camundongos Fire+/+ (Fig. 1j), independentemente do diâmetro do axônio (Fig. 1k). Nossos resultados indicam que a micróglia é dispensável para a maturação dos oligodendrócitos e desenvolvimento da bainha de mielina. Esse achado contrasta com as atribuições anteriores dessas funções à micróglia após a depleção de todas as populações de macrófagos do SNC.

50% reduction of IBA1+ cells at 3 months of age (Extended Data Fig. 7a–c). Compared with mice fed the control diet, microglia depletion from 2 to 3 months of age resulted in enlarged inner tongues and thicker myelin (Extended Data Fig. 7d–g), whereas depletion from 5 to 6 months of age caused patchy demyelination (Extended Data Fig. 7j–l). Oligodendrocyte numbers were unchanged (Extended Data Fig. 7h,i). Therefore, microglia depletion in adult mice mirrored the hypermyelination and myelin degeneration observed at equivalent ages in FireΔ/Δ mice, which indicated that microglia are required for myelin maintenance once it is already formed./p> 0.9999, respectively; two-way ANOVA with Sidak's multiple comparisons test. h, Lipidomics analysis represented as log2(fold change (FC)) in FireΔ/Δ mice versus Fire+/+ mice, with upregulated lipid species indicated in red and downregulated lipid species indicated in blue, ordered based on desaturation of fatty acids (double bonds) and total class value (0–6). Boxes indicate lipid species of interest. SM, sphingomyelins; CE, cholesterol esters; CER, ceramides; DCER, dihydroceramides; HexCER, hexosylceramides; TG, triaglycerides; DG, diacylglycerides; PC, phosphatidylcholine; LPC, lysophosphatidylcholine; PC-O, 1-alkyl,2-acylphosphatidylcholines; PC-P, 1-alkenyl,2-acylphosphatidylcholines; PE, phosphatidylethanolamine; LPE, lysophosphatidylethanolamine; PE-O, 1-alkyl,2-acylphosphatidylethanolamines; PE-P, 1-alkenyl,2-acylphosphatidylethanolamines; PG, phosphatidylglycerol; P I, phosphatidylinositol; PS, phosphatidylserine. n = 3 mice per group. One-sample t-test of log2(FC) against a value of 0: SM-0, **P = 0.0058; SM-3, *P = 0.0202; SM-0–6, *P = 0.0347; CE-2, *P = 0.0384; CE-6, *P = 0.0474; CE-0–6, *P = 0.0276; CER-1, *P = 0.0171; TG-1, *P = 0.0301; TG-2, *P = 0.0116; TG-3, *P = 0.0432; TG-0–6, *P = 0.0412; LPC-0, *P = 0.0415; PG-6, **P = 0.0055; PS-2, *P = 0.0459./p> 0.9999 Kruskal–Wallis with Dunn's multiple comparisons test. j, FireΔ/Δ mice were treated with SRI-011381 hydrochloride (SRI; 30 mg kg–1) or vehicle from 2–3 months of age. k, Images of FireΔ/Δ mice treated with vehicle or SRI-011381. l, Images of FireΔ/Δ mice treated with vehicle or SRI-011381 indicating inner tongue size (orange) and myelin thickness (asterisks). m, Inner tongue thickness versus axon diameter. n = 100 axons per mouse, and n = 3 vehicle treated and 4 SRI treated. ***P < 0.0001, simple linear regression of slopes. Vehicle versus SRI and versus Fire+/+, ***P < 0.0001; SRI versus Fire+/+, P = 0.0519, Kruskal–Wallis with Dunn's multiple comparisons test. n, Myelin thickness versus axon diameter. n = 100 axons per mouse, and n = 3 vehicle treated and 4 SRI treated. ***P < 0.0001, simple linear regression of slopes. Vehicle versus SRI and versus Fire+/+, ***P < 0.0001; SRI versus Fire+/+, P > 0.9999, Kruskal–Wallis with Dunn's multiple comparisons test. Scale bars, 1 µm (f,g,k,l) or 25 µm (b)./p>80% power for all experiments. Both males and females were used throughout the study, except for open-field experiments, for which only male mice were used. Animals were randomized to time points analysed. ARRIVE2 guidelines were followed in providing details of experiments, quantifications and reporting./p>

3.0.CO;2-R" data-track-action="article reference" href="https://doi.org/10.1002%2F%28SICI%291096-9861%2820000410%29419%3A3%3C364%3A%3AAID-CNE8%3E3.0.CO%3B2-R" aria-label="Article reference 7" data-doi="10.1002/(SICI)1096-9861(20000410)419:33.0.CO;2-R"Article CAS Google Scholar /p> 0.9999 and 0.7698, Mann Whitney and 2-tailed unpaired Student's t-test, respectively. At 3-4 months, n = 5 FIRE+/+ and 4 FIREΔ/Δ mice, at 6 months, n = 5 FIRE+/+ and 3 FIREΔ/Δ mice. d) Flow cytometry gating strategy for assessment of non-microglial myeloid cells (including BAMs; CD11b+ CD45hi) for panels (e) and (f). e) Intensity of expression of CSF1R in FIRE+/+ and FIREΔ/Δ mice in CD11b+CD45lo microglia (MG) versus CD11b+CD45hi myeloid cells. f) Mean Fluorescence Intensity (MFI) of CSF1R ± s.e.m. in non-microglial myeloid cells (including BAMs) in FIRE+/+ and FIREΔ/Δ mice. ****P < 0.0001, 2-tailed unpaired Student's t-test. n = 4 FIRE+/+ and 5 FIREΔ/Δ mice g) Images of astrocytes (SOX9; green; GFAP+; magenta) at 1 month of age in the corpus callosum. Scale bar, 75 μm. Inset shows magnified view of double positive cells. Scale bar, 25 μm. h) Mean SOX9+ GFAP+ cells/mm2 ± s.e.m. at 1 month of age in the corpus callosum. n = 5 mice per group. Non-significant, P = 0.4799, 2-tailed unpaired Student's t-test./p>

 0.9999, Repeated measures 2-way ANOVA with Sidak's multiple comparisons test. c) Mean primary errors ± s.e.m. during training phase. n = 13 FIRE+/+ mice and 10 FIREΔ/Δ mice. Non-significant, Day 1: P = 0.9649; Day 2: P = 0.5968; Day 3: P = 0.8884; Day 4: P = 0.6028; Day 5: P = 0.9215; Day 6: P = 0.9437, Repeated measures 2-way ANOVA with Sidak's multiple comparisons test. d) Mean percentage of time spent in the target quadrant± s.e.m., n = 13 FIRE+/+ and 10 FIREΔ/Δ. Dotted line indicates 25% chance. Non-significant between genotypes, 1hr: P = 0.7337; 3d: P > 0.9999, 2-way ANOVA with Sidak's multiple comparisons test. e) Mean number of nose pokes into holes during 1hr probe test ± s.e.m., n = 13 FIRE+/+mice and 9 FIREΔ/Δ mice. Target **P = 0.0019, 2-way ANOVA with Sidak's multiple comparisons test. f) Mean number of nose pokes into holes during 3d probe test ± s.e.m., n = 13 FIRE+/+mice and 9 FIREΔ/Δ mice. Non-significant, P = 0.9329, 2-way ANOVA with Sidak's multiple comparisons test. g) Reversal phase: Target hole 2 (blue) is 180° from the original target; mice require cognitive flexibility to adapt to the new target. h) Mean primary latency (sec) ± s.e.m. over 3 training days. n = 13 FIRE+/+ and 9 FIREΔ/Δ. Non-significant across all training days between genotypes, Day 1: P = 0.9999; Day 2: P = 0.5186; Day 3: P = 0.9622, Repeated measures 2-way ANOVA with Sidak's multiple comparisons test. i) Mean primary errors ± s.e.m. during reversal days. n = 13 FIRE+/+ and 9 FIREΔ/Δ. Day 1: *P = 0.0488, Day 2: *P = 0.0142, Day 3: P = 0.6727, Repeated measures 2-way ANOVA with Sidak's multiple comparisons test. j) Mean percentage of time spent in the target quadrant during reversal probe test ± s.e.m. n = 13 FIRE+/+ mice and 9 FIREΔ/Δ mice. Dotted line indicates 25% chance. Non-significant, P = 0.6933, 2-tailed unpaired Student's t-test. k) Mean number of nose pokes into holes during reversal probe test ± s.e.m. n = 13 FIRE+/+ mice and 9 FIREΔ/Δ mice. Non-significant P = 0.9657, 2-way ANOVA with Sidak's multiple comparisons test. l) Schematic of Open Field test. m) Total distance travelled (m) during 10-min Open Field test ± s.e.m. n = 37 mice: n = 15 FIRE+/+ mice (7 young, 8 middle-aged); n = 22 FIREΔ/Δ mice (12 young, 10 middle-aged). Young mice =  4–8 weeks of age, Middle aged mice = 11–13 months of age. Non-significant, Young: P = 0.9997; Middle-aged: P > 0.999, 2-way ANOVA. n) Percentage (%) of time spent in the centre of the arena during Open Field test ± s.e.m. n = 37 mice: n = 15 FIRE+/+ mice (7 young, 8 middle-aged); n = 22 FIREΔ/Δ mice (12 young, 10 middle-aged). Young mice = 4–8 weeks of age, Middle aged mice = 11–13 months of age. Non-significant, Young: P = 0.7899; Middle-aged: P > 0.9995, 2-way ANOVA. o) Mean distance travelled (m) during training days ± s.e.m. n = 13 FIRE+/+ mice and 9 FIREΔ/Δ mice. Non-significant, P = 0.9607, >0.9999, >0.9999, 0.9955, 0.6583, 0.6034, Repeated measures 2-way ANOVA with Sidak's multiple comparisons test. p) Mean distance travelled (m) during reversal days ± s.e.m. n = 13 FIRE+/+ mice and 9 FIREΔ/Δ mice. Non-significant, P = 0.7856, 0.9784, 0.8626, Repeated measures 2-way ANOVA with Sidak's multiple comparisons test. q) Mean speed (m/s) during training days ± s.e.m. n = 13 FIRE+/+ mice and 9 FIREΔ/Δ mice. Non-significant, P = 0.9998, >0.9999, 0.6667, 0.9995, 0.9831, 0.9995, Repeated measures 2-way ANOVA with Sidak's multiple comparisons test. r) Mean speed (m/s) during reversal days ± s.e.m. n = 13 FIRE+/+ mice and 9 FIREΔ/Δ mice. Non-significant, P = > 0.9999, 0.9940, 0.1561, Repeated measures 2-way ANOVA with Sidak's multiple comparisons test./p>

 0.9999; CC1-: P > 0.9999, 1-way ANOVA with Tukey's multiple comparisons test. d) Representative images of EdU+ (magenta) CC1+ (green) OLIG2+ (white) triple positive cells (arrows). Scale bar, 25 µm. e) Images of corpus callosum 6 weeks post cognitive testing. Scale bar, 1 µm. f) Mean number of myelinated axons/mm2 ± s.e.m. in untrained versus trained mice. n = 3 mice/group in untrained category, 4 trained FIRE+/+ mice and 6 trained FIREΔ/Δ mice. FIRE+/+ mice *P = 0.0364, FIREΔ/Δ mice non-significant, P = 0.8537, 2-tailed unpaired Student's t-test. g) Mean percentage increase in myelinated axons in trained FIRE+/+ and FIREΔ/Δ mice. n = 3 mice per group in untrained category, 4 trained FIRE+/+ mice and 6 trained FIREΔ/Δ mice. h) Correlation between mean myelinated axons per mm2 and reversal day 1 (RD1) primary errors or average primary errors in FIRE+/+ and FIREΔ/Δ mice. Each data point represents an individual mouse. n = 4 FIRE+/+ and 6 trained FIREΔ/Δ mice./p>

1 µm: *P = 0.0263, 2-tailed unpaired Student's t-test. e) Images of mature oligodendrocytes co-expressing OLIG2 (white) and CC1 (magenta) at 6 months of age. Scale bar, 75 µm. f) Mean OLIG2+ CC1+ cells/mm2 ± s.e.m. n = 5 FIRE+/+ and 3 FIREΔ/Δ. Non-significant, P = 0.6400, 2-tailed unpaired Student's t-test. Mean proportion of cells of the oligodendrocyte lineage (OLIG2+) which are mature (CC1+; black) or immature (CC1-; grey) ± s.e.m. n = 5 FIRE+/+ and 3 FIREΔ/Δ. Non-significant, CC1+: P = 0.9938; CC1-: ns P = 0.9938, 1-way ANOVA with Tukey's multiple comparisons test. g) Images of mature oligodendrocytes co-expressing OLIG2 (white) and CC1 (magenta) at 3-4 months of age. Scale bar, 75 µm. h) Mean OLIG2+ CC1+ cells/mm2 ± s.e.m. n = 5 mice/group. Non-significant, P = 0.9825, 2-tailed unpaired Student's t-test. Mean proportion of cells of the oligodendrocyte lineage (OLIG2+) which are mature (CC1+; black) or immature (CC1-; grey) ± s.e.m. n = 5 mice per group. Non-significant, CC1+: P = 0.7076; CC1-: P = 0.7076, 1-way ANOVA with Tukey's multiple comparisons test. i) Images of FIRE+/+ and FIREΔ/Δ mouse corpus callosum at 4.5 months of age indicating onset of demyelination in the latter (magenta asterisks), examples of myelinated axons of medium-large calibre indicated by green asterisks. Scale bars, 5 µm and 1 µm. j) Mean number of myelinated axons/mm2 ± s.e.m. n = 3 mice/group. **P = 0.0042, 2-tailed unpaired Student's t-test. k) Mean myelin thickness per small (<0.6 µm) or medium-large (>0.6 µm) axon diameter bin ± s.e.m. at 3-4 months of age. n = 3 mice/group. <0.6 µm: non-significant, P = 0.8978; >0.6 µm: *P = 0.0491, 2-way ANOVA with Sidak's multiple comparisons test. l) Mean of diameters (0.7290 µm) of demyelinated axons per representative image ± s.e.m. in FIREΔ/Δ mice. n = 3 mice./p>

1 µm WT vs. Plp-creERT;Tgfbr1fl/fl **P = 0.0037 and Plp-creERT;Tgfbr1fl/fl vs. Tgfbr1fl/fl ***P = 0.0003, 2-way ANOVA with Sidak's multiple comparisons test. f) Mean number of myelinated axons ± s.e.m./axon diameter bin in 3-month-old FIREΔ/Δ mice following treatment with vehicle control or SRI-011381 hydrochloride from 2 to 3 months of age. n = 3 Vehicle-treated and 4 SRI-treated mice. Non-significant, P = 0.9202, 2-way ANOVA with Sidak's multiple comparisons test. g) Mean inner tongue thickness (µm) ± s.e.m. per axon diameter bin in 3-month-old FIREΔ/Δ mice following treatment with vehicle control or SRI-011381 hydrochloride from 2 to 3 months of age. n = 3 Vehicle-treated and 4 SRI-treated mice. 0.5-1.0 µm: *P = 0.0334, >1 µm: ****P < 0.0001, 2-way ANOVA with Sidak's multiple comparisons test. h) Mean myelin thickness (µm) ± s.e.m./axon diameter bin in 3-month-old FIREΔ/Δ mice following treatment with vehicle control or SRI-011381 hydrochloride from 2 to 3 months of age. n = 3 Vehicle-treated and 4 SRI-treated mice. 0.5-1.0 µm: **P = 0.0027, >1 µm: ****P < 0.0001, 2-way ANOVA with Sidak's multiple comparisons test./p>